Inexpensive Strobe-like Photographs

Emil L. Medeiros, Centro Brasileiro de Pesquisas Físicas, CBPF/MCT and Our Lady of Mercy School, Rio de Janeiro, RJ, Brazil
Odilon A.P. Tavares, and Sérgio B. Duarte, Centro Brasileiro de Pesquisas Físicas, CBPF/MCT, Rio de Janeiro, RJ, Brazil

This paper reports on a technique the authors have developed to produce and analyze, at very low cost, good quality strobe-like photographs like the one shown in Fig. 1. While the concept is similar to the one described by Graney and DiNoto, the strategy described here benefits from recent advances in the fields of digital photography and related software to significantly reduce the costs, simplify the production process, and enhance the final quality of photographs of this type, as well as to obtain greater accuracy in measurements made with them.

Over the last decade and a half, some important articles on the use of digitized video for motion analysis have been published in this journal. David Wagner was one of the first to “use a computer to track objects and measure their motion using a real-time base,” in this case the one provided by the time sequence of the frames in a video clip. In addition, he and his collaborators developed a system to obtain the sequential x- and y-coordinates of an object moving on a plane by clicking the mouse directly on the object's image. Graney and DiNoto introduced a convenient technique for combining several frames into a single “composite image that looks like, but is considerably less clear than, a strobe photograph.” Laws and Pfister have applied digital video analysis to a number of real-world events: collisions between football players, complex mid-air movements of divers after jumping.

Fig. 1. (a) Outdoor strobe-like photograph of the mid-air movements of a heavy rotating metal pipe launched at an angle above the horizontal, obtained by blending nine frames of a video clip into a single composite image. To avoid excessive overlapping of the sequential images of the pipe, we only kept every third frame. Note the plumb-line and the 1.5-m metric tape on the left, to be used as references in the digitization of the pipe center-of-mass coordinates; (b) the digitized x- and y-coordinates of the pipe's c.m. (solid circles) and the least-squares parabola (solid line).
from high boards, etc. Finally, it is also worth mentioning the article by Chow, Carlton, Ekkekakis, and Hay, who have developed a web-based digitized video system with application to the analysis of planar, projectile motion.

In conventional stroboscopic photography, a single frame of the photographic film is repeatedly exposed whenever the flash of a stroboscopic light bulb illuminates a moving object; the frequency of the strobe lamp provides the real-time step between successive positions of the moving object, and the inclusion in the photo of a metric ruler (or any other reference of known length) gives the real coordinates needed for the analysis of the motion of the object. In this type of photography the objects whose motion is to be analyzed are usually light-colored, and the background should be dark to avoid its overexposure by the repeated flashes of the strobe lamp.

In this paper, we describe a different approach, opposite in some aspects to the one used in conventional stroboscopic photography. Here, the strobe-like photo is obtained from a video clip made of a dark-colored object moving against a light-colored background. The basic idea underlying this strategy can be summarized as follows: nowadays, most of the compact, low-cost digital photo cameras allow, in addition, the user to make video clips with length limited only by the capacity of the storage media. In these low-end cameras, the user has no control over the exposure settings; the camera computer automatically calculates the “best combination” of exposure time (“speed,” in the language of photographers) and diaphragm aperture (“f-number”) suited to the existing light conditions. Also, the f-values have a short range (2.8–5.6 for the Sony Cybershot DSC-W5 camera we have used), and the computer has, therefore, to adjust the “speed” in order to render well-exposed frames. If the moving object is a dark and relatively small one, and the background is as bright as possible, the camera light sensor will register the presence of a great amount of light and will, therefore, force the use of high “speeds.” This procedure will then lead to the very short exposure times needed to capture frozen, nonblurred images of the moving object. Such conditions have been achieved in developing this technique by using basically an intense, artificial lighting inside a physics laboratory, as well as direct sunlight outside the school buildings.

Apparatus and Procedure

In the first step, the short movies used to obtain the strobe-like photos were made with the camera...
The reference scale for the tracking of the coordinates of the moving objects was provided by a metric tape attached to the screen (note the tape on the left in Figs. 1, 4, and 5).

In the second step, the video file (downloaded to a computer) has to be opened with any video-editing software that allows the user to extract individually selected frames as image files. In our case, the software used was the AVS Video Converter and the images were saved in JPEG file format, with the same size (640 x 480 pixels) and resolution (96 dpi) of the original frames. With this software the user may also choose to quickly adjust the levels of contrast, brightness, sharpness, etc. of the video clip as a whole, a convenient feature that may enhance significantly the quality of the final strobe-like photos.

In the third step, all the extracted frames must be input into any software capable of combining the image files into a single composite photograph. This kind of “stroboscopic photograph” makes it a lot easier to track the motion of the object by eliminating the need of marking its location at several equally spaced (in time) frames. For this purpose, the authors have used Paint Shop Pro, from Jasc Software Inc., later acquired by Corel Corp. and now commercialized as Paint Shop Pro X2. In working with this software, all the input image files appear in separate windows labeled initially as “background” layers; it is up to the user to choose which one must stay like that. The window containing the next image to be combined must now be made active, all its contents selected by choosing “Select All,” then copied (to the clipboard) and pasted onto the window with the background image by clicking on “Paste As New Layer.” The process is then repeated for each of the remaining sequential images. At this point, the window with the combined images shows only the last layer pasted (the one on the foreground), and its “Layer Palette” lists the blend mode currently chosen for each of the individual layers pasted onto the background. (The layer blend modes are methods of combining the pixels of the foreground layer with the pixels of the underlying layers.) The user may change from the default “Normal” blend mode to any of the several options available (“Darken,” “Lighten,” “Multiply,” etc.). While this choice may involve some trial and error.
until the best results are achieved, being also a matter of personal taste, the authors have found the “Darken” blend mode the most appropriate for the situations illustrated in Figs. 1–5. In this blend mode, pixels in the selected layer that are darker than the underlying layers are applied to the image; pixels lighter than the underlying layers disappear. Since the strategy adopted in obtaining these composite strobe-like photos starts by shooting the video clip of a dark-colored object moving against a light-colored background, it is expected that the “Darken” blend mode should render the best results. However, different blend modes might be preferable depending on the application; we encourage the reader also to try other blend modes, for some of them provide very interesting results. This process of combining the images into a single file is over only upon the saving of the file (in JPEG format, for instance); it is only then that the merged (or composite) image is generated. Once saved and closed, this composite image can no longer be split into its separate layers when reopened later. The layer blend modes described above do not introduce the kind of noise reported by Graney and DiNoto1 when producing composite images with Windows Paintbrush.

Analysis of Strobe-like Photographs

The tracking of a moving object can now be done either on a computer, by using software that allows the digitization of the two-dimensional coordinates, or on a hard copy of the digital photo. This latter process, although cumbersome, has the advantage of dispensing with the use of computers. Besides, this approach offers high school students an opportunity to further develop their skills in carefully making measurements with a ruler, discovering the scale of a photograph, etc. One of the authors (E.L.M.) has been using this method with his 10th-grade students at Our Lady of Mercy (OLM) School (the American Catholic School in Rio de Janeiro) to analyze: 1) the horizontal component of the center-of-mass velocity of a heavy metal pipe rotating in the air (Fig. 1), 2) the speed of a laboratory cart rolling on the top of a table (Fig. 2), and 3) the horizontal component of the velocity of the ball in Fig. 3 (a steel sphere launched “almost horizontally”). By knowing the length (1.50 m) of the metric tape attached to the screen in Fig. 1, and the horizontal distance (0.302 m) between two successive vertical borders delimiting the A4-size paper sheets in Figs. 2 and 3, the students can calculate the positions of the moving objects at equally spaced times. The time steps, \(\Delta t \), have been conveniently chosen as 3/30 s in Fig. 1, 4/30 s in Fig. 2, and 2/30 s in Fig. 3. An example of such analyses is shown in Fig. 2(b).

The analysis of nonuniform motions can also be carried out by careful inspection of printouts of the composite images. However, a more convenient (and faster) method consists of using appropriate software for the digitization of the coordinates of the moving object. An easy-to-use digitization method is the one built-in in Golden Software’s Grapher for Windows (version 3).7 In brief, the first step consists of importing the JPEG strobe-like photo into Grapher and choosing the option “Assign coordinates” under the Graph menu; the user is then prompted to click on a point of the photo and assign to it real coordinates. Having done so, he/she will be requested to repeat the process for a second point “with different \(x, y \) coordinates from the previous point.” Finally, selecting “Digitize” from the Graph menu makes Grapher ready to associate real coordinates to any point at which the user places the cursor and clicks the mouse left button. As the points are digitized, a report is automatically generated in text format. The major advantage of this faster method is that, after having finished the digitization of all selected positions of the moving object, the user can open the saved report of \((x, y)\) coordinates with the Grapher spreadsheet, then insert manually the values of \(t \), and immediately analyze the results graphically by using the software tools. As an
The quality of the “strobe-like” photographs produced from video clips taken with compact digital cameras is limited by the standard size (640x480 pixels) and resolution (96 dpi) available in their video mode and is, of course, lower than that of the conventional stroboscopic photos, in which a single frame of tens of megapixels is used. However, the precision and accuracy of measurements made on these composite photos are in general quite good, even in the case where the strobe-like photograph is made from raw frames that haven’t been edited to improve their visual quality. Significantly better qualities can be achieved after the treatment of the image by using any of the professional digital photo-editing software available on the market. In our case, some editing of the frames was done with Paint Shop Pro, either to improve the brightness and contrast or to erase extraneous things appearing in the photos and strong shadows cast by the moving object. In doing so, we have been extremely careful not to alter any aspect of the moving object or the metric tape that might affect the measurements. Illumination is another key variable that affects significantly the final quality of the strobe-like photos; one of the advantages in using direct sunlight is that it provides a more uniform illumination of the background screen than artificial light.

On the limitations of the method concerning the speed of the moving object, we notice that even at its lowest position where the billiard ball in Fig. 4 is already moving at about 6 m/s, the ball’s image still appears sharp in the photo. Hopefully, this technique could, under optimized conditions as for the background illumination and the object, be used for registering sharp images of objects moving as fast as 10 m/s, or even extend this upper limit to higher speeds in case a more sophisticated camera is used.

Finally, concerning costs, we had to buy the plastics for the homemade screens used as background in the outdoor sessions (about $10 for each 1.4 m x 3 m piece). Three metal pipes (amounting to about $40) were needed: a long one (about 2.9 m) provided the support to hang the reasonably heavy screens (Figs. 1, 4, and 5), and two shorter ones (about 1.5 m each) were used at the lower ends of the screens to keep them well stretched and in a vertical plane. The old cart (Fig. 2) and the steel sphere are from our school’s
physics lab, and the other small items amount to less than $15. So, the only expensive items are Paint Shop Pro (approx. $80) and Grapher for Windows (approx. $349), general-purpose software that might already be available at a school computer lab. Furthermore, alternatively to Grapher, the tracking of coordinates can also be achieved by using free image-digitizing software (see, for instance, Didge9 and Image Tool10), bringing the costs down to less than 40%. At schools not equipped with these or similar software for groups of students, the teacher still has the option of using the method described in this paper by assigning fun homework projects to his/her students, asking them to creatively produce videos from their own ideas, even outside school grounds, and later hand in the video files to their teacher for the extraction and blending of frames into a single photo. Indeed, a student of one of the authors is currently planning to use the method for monitoring his progress in the PE classes of long- and high-jumping.

Acknowledgments
The authors are indebted to the OLM professionals Mr. Raimundo Veras (Maintenance Dept.), for his excellent job in searching for an intense and uniform background illumination for the indoor sessions, and Ms. Marcia Nogueira (Art Dept.), for her preparation of the grid on the whiteboard and invaluable help also throughout the many details of the outdoor sessions. Helena M. Barreto, then enrolled in the scientific vocational program at CBPF, deserves our deepest thanks for her wise, time-saving hints in working with Paint Shop Pro. We finally appreciate the care dedicated by the OLM 10th graders in working with printouts of the strobe photos, and the useful suggestions from the referee, which led us to improve the paper.

References

PACS codes: 01.50.Pa, 45.00.00

Emil L. Medeiros got his PhD from Brazilian Center for Physics Research (CBPF, Rio de Janeiro) in 1989. His research interests include heavy-ion nuclear reactions, natural and artificial radioactivity, and, more recently, physics education. Since 1996, he has also been teaching physics at the high school level at the American Catholic School in Rio, OLM.
emi@cbpf.br

Odilon A. P. Tavares got his PhD in physics from CBPF in 1978. In recent years, he has led research works (with a number of papers) on photonuclear reactions, and since 1975 has been devoted to investigation related to natural and artificial radioactivity such as photon emission, alpha decay, cluster radioactivity, and spontaneous fission.
ootavares@cbpf.br

Sérgio B. Duarte got his PhD in physics from CBPF in 1983 and currently works in nuclear physics and astrophysics; he has also been involved, for many years, in teaching activities with students from different Brazilian universities, in physics courses at both the undergraduate and graduate levels.
sbd@cbpf.br